

Process Overlay Controllability in EUV Lithography

Byounghoon Lee, Jun-Taek Park, Sunyoung Koo, Yoonsuk Hyun, Seokkyun Kim, Chang-Moon Lim, Donggyu Yim, Sungki Park

Hynix Semiconductor Inc.

Contents

- □ Introduction
- □ Overlay Contributors
 - Intra-Field Term
 - Inter-Field Grid Term
- □ Product Overlay Control
 - Zone Align and Correction per Exposure
 - Product Overlay Controllability
- □ Summary

ITRS Overlay Roadmap

Year of Production	2012	2013	2014	2015	2016
DRAM ½ pitch(nm)	36	32	28	25	23
Overlay(nm)	7.1	6.4	5.7	5.1	4.5

From ITRS 2010

- EUV introduction from 32~25nm, 6 to 5nm overlay required
- High price of EUV HVM compels us to mix and match with ArF, hence EUV overlay gets more challenging

General Understanding

Positive

Less red-blue offset

No water

No air turbulence in interferometer **Negative**

Mask

Non-telecentricity

EUV & IR heating

Thermal control

in lens control

Wafer clamping Less freedom

-Positive and negative aspects of overlay challenge in EUVL

EUV

Overla

What Main Factors in EUV Overlay

- □ Intra-Field Term
- Lens distortion and aberration
- Reticle flatness induced shift
- Reticle registration error
- Reticle clamping reproducibility

- □ Inter-Field Grid Term
- Wafer clamping reproducibility
- Grid matching between tools (MMO)
- Machine stability
- Process effect

- ...

Contents

- □ Introduction
- □ Overlay Contributors
 - Intra-Field Term
 - Inter-Field Grid Term
- □ Product Overlay Control
 - Zone Align and Correction per Exposure
 - Product Overlay Controllability
- □ Summary

Rotatable Mask Experiment

Field dependent Term = Aberration+ Stage ...

Mask dependent Term = Registration + Flatness

иииix

Field Dependent Term; ADT vs. PRI

- Field dependent term is decreased in PPT tool because of significant improvement in lens distortion

Mask Dependent Term

Mask B
@ PPT

- Mask term from flatness and registration
- Mask induced overlay error is less than 2.5nm

- Reticle clamping reproducibility below 0.7nm, not substantial in EUV overlay control

Contents

- ☐ Introduction
- □ Overlay Contributors
 - Intra-Field Term
 - Inter-Field Grid Term
- □ Product Overlay Control
 - Zone Align and Correction per Exposure
 - Product Overlay Controllability
- □ Summary

Why Large Overlay in SMO?

Back side polished wafer

SMO (1st : EUV/2nd : EUV)

Grid: 8.2(X)/6.2(Y) Field: 1.3(X)/1(Y) MMO (1st: ArFi/2nd: EUV)

Grid: 8.2(X)/7.4(Y)

Field: 3.6(X)/5.2(Y)

- Grid terms are main factor of overlay control
- Grid term in SMO as large as MMO case

Wafer Clamping Effect

Double exposure w/ and w/o re-clamping of wafer

with re-clamping

4.2(X)/3.2(Y)

1.2(X)/1.7(Y)

- Wafer re-clamping makes substantial change in grid finger print because of change in chucking mechanism

Clamping Repro vs. Wafer Stacks

5 times measurement per wafer

- Wafer clamping repro is worse in backside polished Si wafer but quite acceptable in processed wafer with product stack, roughness of surface!!!

Contents

- ☐ Introduction
- □ Overlay Contributors
 - Intra-Field Term
 - Inter-Field Grid Term
- □ Product Overlay Control
 - Zone Align and Correction per Exposure
 - Product Overlay Controllability
- □ Summary

Improvement by Zone Align

Overlay term analysis

- Grid term is dominant because of grid mismatch between EUV and ArFi tools
- Zone align improved wafer variation as well as grid residual error

Correction Per Exposure

By Zone align

- Overlay improved significantly by CPE
- Grid matching with ArFi is very important

Matched Product Overlay Trend

10 wafer exposure

- Product overlay can be controlled below 7nm
- 1st wafer effect & wafer variation under investigation

Summary

- □ Lens distortion improved significantly in PPT
- ☐ Mask dependent term is below 2.5nm that need to improved for 2Xnm DRAM
- □ Wafer clamping repro is worse in backside polished Si wafer, however good in product wafer
- □ Grid matching is very important in MMO
- □ On-product overlay achieved below 7nm by CPE and Zone align so far

Back-up

Rotatable Mask Experiment

= Aberration+ Stage ...

= registration + flatness